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ABSTRACT: Nonlinear control problem for a missile autopilot is quick adaptation and minimizing the 
desired acceleration to missile nonlinear model. For this several missile controllers are provided 
which are on the basis of nonlinear control or design of linear control for the linear missile system. In 
this paper a linear control of dynamic matrix type is proposed for the linear model of missile. In the 
first section, an approximate two degrees of freedom missile model, known as Horton model, is 
introduced. Then, the nonlinear model is converted into observable and controllable model base on 
the feedback linear rule of input-state mode type. Finally for design of control model, the dynamic 
matrix flight control, which is one of the linear predictive control design methods on the basis of 
system step response information, is used. This controller is a recursive method which calculates the 
development of system input by definition and optimization of a cost function and using system 
dynamic matrix. So based on the applied inputs and previous output information, the missile 
acceleration would be calculated. Unlike other controllers, this controller doesn’t require an 
interaction effect and accurate model. Although, it has predicting and controlling horizon, there isn’t 
such horizons in non-predictive methods. 
Keywords:  Dynamic Matrix Control (DMC), 2 degrees of freedom missiles model, Feedback 
linearization, Flight control 

 
INTRODUCTION 

 
 The performance of aerospace systems such as aircraft, spacecraft and missiles is highly dependent 
on the capabilities of the guidance, navigation and control systems. To achieve improved performance in such 
aerospace systems, it is important that more sophisticated control systems be developed and implemented 
(Tsourdos & White, 2005). Modern missiles often operate in flight regimes where nonlinearities significantly 
affect dynamic response. For example, a high performance missile must be quickly responsive to and follow 
accurately any guidance commands, so that, it can intercept fast moving and agile targets (Bryson & Y-C 1975; 
Xin & Balakrishnan, 2003). The tracking performance of a missile is also dependent on the location within the 
flight envelope and varies with factors such as Mach number and dynamic pressure. Many nonlinear control 
methods have been proposed for the missile autopilot design. Several approaches, including adaptive control 
(Lin & Cloutier, 1991), nonlinear control (White et al., 1998), and gain scheduling (Shamma & Cloutier, 1993) 
have been used to alleviate these tracking problems. 
 In this paper, input-state linearization method is used for linearization. Feedback linearization is a 
popular method used in nonlinear control applications, and there have been several flight control 
demonstrations (Snell, 1992). Feedback linearization methods can be viewed as the ways of algebraically 
transforming a nonlinear system dynamic, fully or partially, into a simple linear one. In the standard approach to 
exact input-state linearization, one uses coordinate transformation and static state feedback such that the 
closed-loop system, in the defined region, takes a linear canonical form (Cheh et al., 2004). The input-state 
linearization method differs from conventional linearization techniques in that input-state linearization is 
achieved via exact state transformations and feedback, rather than by linear approximations of the system 
dynamics. Linearization has a number of advantages in the control field, including simplicity, being easily 
implemented, being well developed, and so forth, and thus the literature contains many studies of the 
linearization of both discrete time systems and continuous-time systems (Fuh, 2009). After the system’s 
linearization form is obtained, the linear control design scheme is employed to achieve stabilization or tracking 
(Slotine,1991). 
 Model predictive control designates a wide range of control methods which make an explicit use of a 
model of the process to obtain the control signal by minimizing an objective function. The common idea is 
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receding strategy which means that, the objective function is minimized by considering also future control 
actions along the so-called prediction horizon but only the first control signal is applied to the system; then the 
horizon is displaced towards the future and the next control signal is recalculated. In view of the main idea of 
 the model predictive control strategy it is clear that, the process model plays an important role in the 
method. There are many types of models used; one of them is the so-called step response model. For stable 
systems one may take a truncated response and with this model the control signal can be calculated by 
minimizing the objective function along the prediction horizon. The step response model is used by the 
Dynamic Matrix Control (DMC) algorithm, developed at the end of the seventies (Cutler & Ramaker, 1979 and 
1980).  It is a successful and widely applying technique in industrial and engineering applications (Besnyei & 
Simon, 2010). The dynamic matrix control is one of the important and representative predictive control 
algorithms and characterized by replacing the traditional auto correction of single step prediction with multiple 
step prediction, repeating optimization based on the practical feedback information, and restraining the 
algorithm sensitivity to parameter change of the model effectively (LU & TSA, 2007; Yao & Guo, 2006; Guo et 
al., 2010).  
 The purpose of this paper is to find a control rule for a nonlinear missile, so that, by applying it, the 
desired acceleration of the missile be obtainable. Several controllers for this nonlinear missile model have been 
proposed which present a combination of feedback linearization methods or local linearization with linear, 
adaptive and intelligent controllers.  
 For this model, the adaptive controller by varying parameters of the missile condition (Tsourdos & 
White, 2005), multi-objective fuzzy controller (Tsourdos et al., 2006), variable gain fuzzy controller (Tabataba et 
al., 2010) and quasi-LPV controller are designed, which these controllers are designed using the input - output 
feedback linearization or local linearization (White et al., 2007). This paper presents a dynamic matrix controller 
which is the controller for model missile. 
 Due to the predictive and controllable horizons, which aren’t expressed in unpredictable controllers, this 
algorithm is not comparable with unpredictable methods. However, due to its simplicity and good performance 
of the algorithm compared to other predictive algorithms, designers apply this algorithm to design the controller. 
   For example, the model algorithm control (MAC), which is based on the impulse response, has two 
main problems, one of them is lack of accurate impulse response in operational systems, and the other is the 
designed control signal due to lack of control effort in inaccurate cost function. 
 Another method of widely used predictive method is the Generalized Predictive Control (GPC), which is on the 
basis of the discrete transfer function model of the system. This method is generalized method of two previous 
ones, which get better results than the previous methods, but heavy calculations of this method prevents from 
simple design for complex systems. 
 In the first part of this paper, the nonlinear models and design of linearization rule and linearization 
method of input - state are discussed. 
 In this linearization, one of the problems of designing a linearization rule which is changes of the 
aerodynamic coefficients based on the parameters such as Mach number and angle of attack is resolved. 
Furthermore, the dynamic matrix control for step response of linear system which has limited final value is 
designed. 
 Simulation results show that, the designed linear rule was succeeded and the applied dynamic matrix 
control has a suitable and robust adaptation for the missile acceleration. 
 
Missile model 
 The missile model used in this study derives from a nonlinear model produced by Horton of Matra-
British Aerospace (Horton, 1992). This study will look at the reduced problem of a 2 DOF controller for the pitch 
and yaw planes without roll coupling. This model describes a reasonably realistic airframe of a tail controlled 
tactical missile in the cruciform fin configuration (Fig.1). The angular and translational equations of motion of 
the missile airframe are given by 
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where the variables are defined in Fig. 1, Table 1 and 2. 
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Figure  1. Airframe axes. 

 
 In Eq. (1), v is the sideslip velocity, U is the longitudinal velocity, r is the body rate, δ is the rudder fin 

deflections, V0 is total velocity vector and calculated from 2 2U v  and V0≈U because U>>v, Cyv, Cyδ is lateral 

force coefficient due to sideslip velocity and fin angle, Cnr, Cnv, Cnδ is yawing moment coefficient due to body 
rate, sideslip velocity and fin angle. These forces and moments are derived from wind tunnel measurements 
and by using polynomial approximation algorithms which can be fitted to the set of curves taken from look-up 
tables for different flight conditions (Tsourdos & White, 2000). A detailed description of this model can be found 
in Horton (1992) found that some of them are shown in Table 1. 
 

Table 1. 

Force and moment coefficients of missile model 
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 These force and moment coefficients depending on parameters such as λ, Mach number and σ. λ is 
roll angle, The Mach number is defined as M=V0/a where a is the speed of sound. σ is incidence angle or the 

angle between U  and 
0V , can be taken as σ=v/V0, as sinσ≈σ for small σ (Tsourdos et al. 2006). Involving the 

Mach number   0.6 6M  , roll angle 4.5 45o o   
 and total incidence 3 30o o   

 (White et al. 2006). In Table 2 

the characteristics of the Horton model are presented. 
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Table 2. 

 Characteristics of the Horton model 

0  Sea level air density 31.23Kg m  


 Air density 0 0.094h    

h  Altitude in Km  

0a
 

Sea level velocity of sound 340m s  

a  Velocity of sound 0 4a a h m s   

d  Reference diameter (calibre) 0.2m  

S  Reference area 2 24 0.0314d m   

l  Length of the missile 2.7m  

m  Mass 125Kg  

zI  Lateral inertia 
275Kgm  

mS
 

Static margin (body+wings) cp cgx x  

fS
 

Fin moment arm for lateral 
motion f cgx x  

fx
 Centre of pressure (fins only) 2.6 m  

cpx  Centre of pressure 
(body+wings) 

1.3 0.1 0.2cpx M   
 

cgx  Centre of gravity 1.55m  

 
Input – State linear feedback 
 The standard form of the nonlinear system can be written as 

( ) ( )x f x g x    (2) 

 where f(x) and g(x) are smooth vector fields on nR . If the state vector is defined as x=[v r]
T
, then Eq. (1) 

can be rewritten in the standard form as in Eq. (2) with the vector fields defined as follows: 
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(3) 

 Definition 1. A nonlinear system in the form of Eq.(2) is said to be input-state linearizable if there is a 
region Ω in R

n
, a diffeomorphism Φ: Ω→R

n
, and a nonlinear feedback control law and defining a new input as 

(Slotine, 1991): 

( , ) ( , )v r v r u     (4) 

 Such that the new state variables Z= Φ(x) and the new input u satisfy a linear time-invariant relation:  

Z AZ Bu   (5) 

 where u is new input or linear model input, the new state Z is called the linearizing state, and the 
control law (4) is called the linearizing control law. By the above definition, the fundamental results of feedback 
linearization can be used to linearize the system.  
Select the matrix A and B as 

0 1 0

0 0 1
A B

   
    
   

 (6) 

Linear system is controllable and observable. Expanding Eq. (5), we obtain 
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Since z1, z2 are independent of ξ, so α(v,r), β(v,r) is calculated as  
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Assuming the z1=v then 
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With z2 be calculated the following relationships. 
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It should be noted that Cyv, Cyδ, Cnr, Cnv, Cnδ are related to M, σ that M, σ is related to v. Some derivatives as 
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If force and moment coefficients is defined as 
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Then derivatives are as follows. 
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(14) 

Using the Eqs (8) to (15) α, β can be calculated. Missile acceleration is second state of linear model and it is 
calculated as 

 0 1

y CZ

C




 (15) 

 In this linearization, due to taking into account the effect of aerodynamic coefficients in the equations of 
the linear rule, the effect of these parameters on the model output can be neglected. 
 In a previous study (Tsourdos & White, 2005), the designed linear rule of input - output has been 
calculated with the assumption of constant aerodynamic coefficients and regardless of the effect of missile 
conditions on these parameters. This proposed control rule solves one of the main problems of missile 
controlling which is the change of aerodynamic coefficients. The other effective parameters in this model such 
as changes in mass, air pressure, Inertia, etc. can be removed by a time-varying gain or a smart filter. 
 
Step Responses 
 For designing DMC controller, step response is required. Linear system transfer function is as follows: 
 

( ) 1

( )

y s

u s s
  (16) 

According to Eq. (16), the output step response of the linear system seen in Fig 2. 

 
Figure 2. Step responses for linear missile acceleration 

 



Tech J Engin & App Sci., 3 (21): 2880-2891, 2013 
 

2886 

 

It is difficult to design DMC controller, because transfer function has poles on the jω axis. To remove ramp of 
the step responses, the feedback is used as follows. 

  2

0 1
0

0 0
Z Z B u k Z

 
   
 

 (17) 

Assuming k2=5, then step responses figures is presented in Fig 3. 
 

 
Figure 3. Step responses with state feedback for linear model 

 
Dynamic  Matrix Flight Control  
 DMC is a control based optimization methodology that is explicitly utilized in dynamic mathematical 
model of a process to obtain a signal which minimizes the objective function. The advantages of this controller 
include: controlling sensitivity to time delay, interaction with other states on output and good resistance to noise 
input due to the recursive algorithm which is the superiority of this controller compared to other linear 
controllers in linear processes. This model which uses the step response of a system to design a cost function, 
describes the system perfectly (Paulusová & Dúbravská 2010, Bemporad & Morari 1999, Carlos et al. 1989). 
 The model must describe the system well. The future process outputs y(k+i) for i=1,….,p are predicted 
over the prediction horizon (p) using a model of the process. These values depend on the current process state 
and on the future control signals u(k+i) for i=0,….,m-1 over the control horizon (m), where m≤p. The control 
variable is manipulated only within the control horizon and remains constant afterwards, u(k+i)=u(k+m-1) for 
i=m,….,p-1. Process interactions and dead times can be intrinsically handled with model predictive control 
schemes such as DMC (Paulusová & Dúbravská 2010, Bemporad & Morari 1999, Carlos et al. 1989). The 
principle of DMC is shown in Fig. 4. 
A general objective function is the following quadratic form  

   
T

T

d p d pJ y y Q y y U R U      (18) 

 
Fig ure4. The principle of DMC 

 
 where, yd is desired set point, R and Q are weight identity matrix, p and m are length of the prediction 
horizon and control horizon, Δu(k) is change in manipulation variable and calculated as 

( ) ( ) ( 1)u k u k u k     (19) 

 yp is the process output, at sample instant is given as 
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where gi is step response coefficients. 
By minimizing objective function, the optimal solution is then given in matrix form as: 

 
1

T TU G QG R G QE


    (21) 

where G is dynamic matrix and constructed as 

1

2 1

1 1

1 1

0 ... 0

... 0

...

...

m m

p p p m

g

g g

G
g g g

g g g



  

 
 
 
 

  
 
 
 
  

 

(22) 

and E is defined as  

d pastE y y D    (23) 

In Eq (23), D is disturbances are considered to be constant between sample instants which can be removed by 
filter as 
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where γ is between 0 and 1.  ypast in Eq (23) is calculated as 

1

1past DMC Ny G U U g 

    (25) 

 

where, gN+1 is final value of step response and G
-
 constructed as  

 

 
Figure 5. Proposed flight control scheme for tracking based on DMC. 
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(26) 

In the previous equations, matrix elements of the ΔU, ΔU
-
 and U as 
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(27) 

Optimal input in present time as   

( ) ( 1) ( )u k u k u k    (28
) 

SIMULATION RESULTS 
 
 For simulation, the desired output applied in the following equation: 

x

0

mad dy d yt



  (29
) 
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where ydmax is a maximum value for yd. 
This relationship must be applied to model assumptions. Parameters for DMC are assumed as: 

25 5

0.5 0.5p p m m

p m

R I Q I 

 

 
 (30

) 

 The sample time T=0.04, and the truncated horizon N=42. To test the performance of the controllers, 
simulations under desired output are performed. 
 To simulate the performance of the controller, 4 desired output is considered for it. In cases of 1 and 2, 
a periodic signal and a pulse and in the case of 3, an exponential signal is applied to the system as the desired 
inputs. In case 4 also, the signal in case 1 plus a white noise with zero mean and variance of 1 is assumed as 
input. 
 

 
Figure 6. Time responses of the controlled and reference variable under DMC for Case 1 

 

 
Figure 7. Time responses of the controlled and reference variable under DMC for Case 2 

 

 
Figure 8. Time responses of the controlled and reference variable under DMC for Case 3 
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Figure 9. States of nonlinear and linear models with rudder and linear model input for Case 1 
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Figure 10. Time responses of the controlled and reference variable under DMC for Case 4 

 
CONCLUSION 

 
 In this paper, for the first time the idea of DMC controllers for flight control of a missile which has 
nonlinear performance is implemented. In this controller, the step response model is defined as a parametric 
model and it is used for the design and optimization of the cost function and optimal selection of inputs . The 
advantages of this method are its easy implementation compared with the adaptive methods and lack of 
sensitivity to the interaction and its performance for the acceleration response of the missile. 
 Computer simulation results of the missile show that for intercept of the target point, the proposed 
method has a good performance. The resistance to noise of the proposed method under these constraints is 
quite visible, although it has a poor function in ramp response, but this problem is solved with a feedback mode 
model. Due to incorporate the aerodynamic coefficients as a function of lateral velocity of missile, the designed 
control law has proper and accurate performance which observed in Fig. 6 & 9. 
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