Pressure sensors

- definition:

$$p = \frac{dF}{dS}$$

$$1 \text{ atm} = 100 \text{ kPa}$$

2 ways of measurement:

 $p \rightarrow F \rightarrow \epsilon$ deformation element \rightarrow change in dimensions

Basic principles of pressure sensors

1. Membrane with strain gages

- most widely used
- membrane deformation:

Action of pressure $\Delta p = p_2 - p_1$ results in strain σ composed of:

- σ_r radial component
- σ_t tangential component

Distribution of radial and tangential strain under pressure-deformation

$$\sigma_r = f_r(r/R)$$

$$\sigma_t = f_t(r/R)$$

Metallic membrane:

- glued semiconductive strain gauges
- metallic foil strain gauges
- thick layer deposition technology

Strain gauge "roseta"

- ideal strain gauge (-foil) for membranes
- 2 sensors at periphery and 2 in the middle

semiconductive membrane

- + difusion implemented piezoresistors
- made by integrated circuit technology ⇒ cheap
- Si, SiC, diamond

Thin-layer pressure sensors

-Separation of measured environment from the sensor \Rightarrow use e.g. In measuring pressure in melting (transfer of deformation from outer durable membrane via connecting rod)

- 1 -four beams = deformation element
- 2 connecting rod from outer membrane

Deformation elements with cantilever and bellows

Immersible pressure sensors

- -Measuring of liquid level
- separation membrane, hermetic cable

Membrane sensor with separating membrane

2. Deformation pressure sensors - tubes

Bourdon tube

3. Capacitive pressure sensors

- capacitor usually differential
- -Deformation element = pre-strained metallic membrane serves as grounded electrode
- -Range: $\Delta p = 1 \text{ mbar} 10 \text{ bar}$, total p up to 400 bar

Differential capacitor with separating liquid

Pressure sensor with ceramic membranes

1- membrane

2 – central piece Al₂O₃

3 - hydraulic liquid

4 - electrodes

5 - temperature sensor

0,1 %, max. 350°C Range 2,5 to 300 kPa

- combination of Si membrane and capacitive sensor

- returning membrane to idle position through electrostatic force

- range - up to 200 kPa

Feedback sensor with bellows

Very precise and expensive

4. Piezoelectric pressure sensor

7. Resonant pressure sensors

Examples of pressure sensors

 (separating metallic membrane) Si measuring membrane, piezoresistors, (integrated amplifier):
PTX 120

• Process pressure sensor: HART or current loop: Capacitive STX 2100

Resonant sensor ,,double fork"

Very low pressures

Principle: LVDT

SCHAEVITZ

SPECIFICATIONS (at 4 mA excitation)

Pressure Ranges (FS

Linearity

Stability

Operating Temperature Range

Storage Temperature

Temperature-Coefficients of...

- Zero (without Comp.)
- Sensitivity

1-20 bar

0,25% FS typ. 1% FS max. 0,5 mV typ. 2 mV max.

-10...80°C (optionally)

-20...100°C

0,05 mV/K typ. 0,2 mV/K max. 0,01%/K typ. 0,02%/K max.

Integrated pressure sensors

- Pure CMOS based sensor
- calibrated to automotive specifications

